
esreveR gnireenignE tfosorciM 
seiraniB

Alexander Sotirov
asotirov@determina.com

CanSecWest / core06



Reverse Engineering Microsoft
Binaries

Alexander Sotirov
asotirov@determina.com

CanSecWest / core06



Overview
In the next one hour, we will cover:

• Setting up a scalable reverse engineering environment
○ getting binaries and symbols
○ reverse engineering tools

• Common features of Microsoft binaries
○ compiler optimizations
○ hotpatching
○ exception handling

• Improving your tools
○ IDA autoanalysis problems
○ loading debugging symbols
○ improving the analysis with IDA plugins



Why Reverse Engineering?
Reverse engineering plays an important role in security 
research. It is most often used for the following:

• Binary patch analysis
• Binary code auditing
• Exploit development
• Interoperability

Recent developments:

• In the last five years reverse engineering tools have matured
• New tools designed specifically for the security community 

have been developed (SABRE BinDiff)
• More complicated exploitation techniques (heap overflows, 

uninitialized variables) require the use of reverse engineering



Why Microsoft Binaries?
Most reverse engineering talks focus on reversing malware, but 
Microsoft binaries present a very different challenge:

• Bigger than most malware
• No code obfuscation (with the exception of licensing, DRM 

and PatchGuard code)
• Debugging symbols are usually available
• Compiled with the Microsoft Visual C++ compiler
• Most of the code is written in object oriented C++
• Heavy use of COM and RPC



Why Me?
The security research team at Determina reverse engineers 
most Microsoft patches, especially when vulnerability details are 
not publicly available. I have been reversing patches every 
month for the last 9 months, including a lot of patches for older 
vulnerabilities.

The main challenge we've encountered is how to deal with the 
large volume of the patches and produce results quickly with 
limited resources.



Part I

Scalable Reverse Engineering



Patch Statistics
Microsoft has released almost 400 security bulletins since 1998, 
often addressing multiple vulnerabilities with a single bulletin. 
The record for most CVE numbers is 14, in MS04-011.

Even bulletins with one CVE number often contain fixes for more 
than one bug. MS05-053 describes a single WMF vulnerability, 
but the patch fixes more than 30 different integer overflows. In 
addition to that, Microsoft often silently fixes undisclosed 
vulnerabilities and adds additional security enhancements not 
directly related to a specific vulnerability.

Microsoft's advance notification gives out the number of bulletins 
they are going to release, but this number in no way corresponds 
to the actual number of vulnerabilities fixed each month, or their 
complexity.



Scalable Reverse Engineering
Reverse engineering patches at Determina turned out to be very 
different than my previous reversing experience. In the past I 
could easily spend more than a month reversing a single 
interesting vulnerability to write an exploit for it. Now we have to 
analyze a lot more vulnerabilities in a shorter amount of time, 
while still producing accurate results. This is an interesting 
challenge.

We have developed internal processes and tools with the 
following goals in mind:

• Automate as much as possible
• Get accurate results with minimal human intervention
• Scale the reversing process to deal with the volume of 

Microsoft patches



Getting the Binaries
Most Microsoft software, including older versions and service 
packs, is available for download from MSDN. We download 
these manually.

To download security updates automatically, we use the 
information in mssecure.xml, which is automatically downloaded 
by MBSA 1.2.1. The XML file contains a list of security bulletins 
for Windows, Office, Exchange, SQL Server and other products. 
It also provides direct download links to the patch files.

Unfortunately MBSA 1.2.1 was retired at the end of March 2006. 
The XML schema used by MBSA 2.0 is different, and our scripts 
don't support it yet.

Once you have all old security updates, downloading the new 
ones every month can be done manually.



Extracting the Binaries
• CAB and most EXE files can be unpacked with cabextract
• MSI and MSP files are difficult to unpack. Usually they 

contain CAB archives that can be extracted, but the files in 
them have mangled names. Still working on a solution.

• An administrative installation is our temporary solution for 
dealing with Microsoft Office.

• Some IIS files are renamed during the installation. For 
example smtpsvc.dll is distributed as smtp_smtpsvc.dll in 
IMS.CAB on the Windows 2000 installation CD.

• Recent patches use intra-package delta compression (US 
patent application 20050022175). Unpacking them with 
cabextract gives you files with names like _sfx_0000._p. 
To unpack these patches, you have to run them with the /x 
command line option.



Binary Database
We have an internal database of binaries indexed by the name 
and SHA1 hash of the file. We store the following file metadata:

• name ntdll.dll
• size 654336 bytes
• modification date May 01, 2003, 3:56:12 PM
• SHA1 hash 9c3102ea1d30c8533dbf5d9da2a47…
• DBG and PDB path Sym/ntdll.pdb/3E7B64D65/ntdll.pdb
• source of the file

○ product Windows XP
○ version SP1
○ security update MS03-007
○ build qfe
○ comment



Binary Database
Current size of our database, including all service packs and 
security updates for Windows 2000, XP and 2003:

• 30GB of files
• 7GB of symbols
• 7500 different file names
• 28800 files total

and growing…



Binary Database



Getting Symbols
Microsoft provides symbols for most Windows binaries. They can 
be downloaded from their public symbol server by including it in 
your symbol path. See the Debugging Tools for Windows help 
for more information.

Use symchk.exe to download symbols for a binary and store 
them in a local symbol store.

We have scripts that automatically run symchk.exe for all new 
files that are added to the binary database.

Most Windows binaries have symbols, with the exception of 
some older Windows patches. In this case BinDiff can be used to 
compare the binaries and port the function names from another 
version that has symbols. Unfortunately symbols are not 
available for Office and most versions of Exchange.



Any Vendors Reading This?
This is my advice to vendors who want to help 3-rd party security 
researchers:

• provide researchers with an accurate list of all security 
updates, hotfixes and other patches (preferably in XML 
format)

• make older releases of your software available
• don't combine security patches with other updates
• have a consistent naming and versioning system
• do not update software without updating its version or build 

number
• provide debugging symbols for all binaries

Microsoft does almost all of the above.



Reverse Engineering Tools
• IDA Pro

○ its plugin API is turning IDA into a reverse engineering platform 
that other tools depend on

• BinDiff
○ invaluable for binary patch analysis

• WinDbg
○ good support for debugging symbols, command line interface, 

frequent updates
• SoftICE

○ great for debugging code between userspace and the kernel
• VMWare

○ Workstation 5 supports multiple snapshots
○ GSX and Server provide a scripting API
○ Workstation 5.5 can be controlled with a command line tool



Ideas
I would like to automate the following tasks:

• Disassemble and run BinDiff on all files updated in a patch
• Compare patches for the same vulnerability in multiple 

versions of Windows: XP and 2003, IE 5 and IE 6, etc.
• Follow the code changes in a single function by diffing all 

versions of the file



BinDiff Demo

MS05-039
Plug and Play Buffer Overflow



Part II

Common Features of Microsoft Binaries



Common Features of
Microsoft Binaries

• Visual C++ compiler optimizations
○ function chunking
○ reuse of stack frame slots
○ sbb comparison optimization
○ switch optimization

• Hotpatching
• Exception handling



Function Chunking
Function chunking is a compiler optimization for improving code 
locality. Profiling information is used to move rarely executed 
code outside of the main function body. This allows pages with 
rarely executed code to be swapped out.

It completely breaks tools that assume that a function is a 
contiguous block of code. IDA has supported chunked functions 
since version 4.7, but its function detection algorithm still has 
problems in some cases.

This optimization leaks profiling information into the binary. We 
know that the code in the main function body is executed more 
often than the function chunks. For code auditing purposes, we 
can focus on the function chunks, since they are more likely to 
contain rarely executed and insufficiently tested code.



Reuse of Stack Frame Slots
In non-optimized code, there is a one-to-one correspondence 
between local variables and the stack slots where they are 
stored. In optimized code, the stack slots are reused if there are 
multiple variables with non-overlapping live ranges.

For example:

int foo(Object* obj)
{

int a = obj->bar();
return a;

}

The live ranges of obj and a don't overlap, so they can be stored 
in same slot on the stack. The argument slot for obj is used for 
storing both variables.

arg_0

return addr

saved ebp

used for both obj and a



SBB Comparison Optimization
The SBB instruction adds the second operand and the carry flag, 
and subtracts the result from the first operand.

• sbb eax, ebx

eax = eax - (ebx + CF)

• sbb eax, eax

eax = eax - (eax + CF)
eax = - CF



SBB Comparison Optimization
The SBB instruction can be used to avoid branching in an if 
statement.

in assembly:
cmp ebx, ecx

sbb eax, eax

inc eax

in C:

if (ebx >= ecx)
eax = 1;

else
eax = 0;

CF = 0
eax = 0
eax = 1

CF = 1
eax = -1
eax = 0

ebx >= ecxebx < ecx



SBB Comparison Optimization
An example:

77D74796 loc_77D74796:

77D74796 mov eax, [esi+file_mapping.ptr]

77D74799 cmp [esi+file_mapping.end], eax

77D7479C sbb eax, eax

77D7479E inc eax

77D7479F

77D7479F return:

77D7479F pop edi

77D747A0 pop esi

77D747A1 retn 0Ch

77D747A1 _ReadChunk@12 endp

in C:
// have we reached the end of the file?
return (file_mapping.ptr <= file_mapping.end);



Switch Optimization
Non-optimized code :

switch (arg_0)
{

case 1: ...
case 2: ...
case 3: ...
case 8001: ...
case 8002: ...

}

00401030 cmp [ebp+arg_0], 1

00401034 jz short case_1

00401036 cmp [ebp+arg_0], 2

0040103A jz short case_2

0040103C cmp [ebp+arg_0], 3

00401040 jz short case_3 



Switch Optimization
Optimized code:

767AFDA1 _GetResDesSize@4 proc near

767AFDA1

767AFDA1 arg_0 = dword ptr 4

767AFDA1

767AFDA1 mov eax, [esp+arg_0]

767AFDA5 mov ecx, 8001h

767AFDAA cmp eax, ecx

767AFDAC ja short greater_than_8001

767AFDAE jz short case_8001

767AFDB0 dec eax

767AFDB1 jz short case_1 ; after 1 dec

767AFDB3 dec eax

767AFDB4 jz short case_2 ; after 2 decs

767AFDB6 dec eax

767AFDB7 jz short case_3 ; after 3 decs



Microsoft Hotpatching
The Microsoft hotpatching implementation is described in US 
patent application 20040107416. It is currently supported only on 
Windows 2003 SP1, but we'll probably see more of it in Vista.

The hotpatches are generated by an automated tool that 
compares the original and patched binaries. The functions that 
have changed are included in a file with a .hp.dll extension. 
When the hotpatch DLL is loaded in a running process, the first 
instruction of the vulnerable function is replaced with a jump to 
the hotpatch.

The /hotpatch compiler option ensures that the first instruction of 
every function is a mov edi, edi instruction that can be safely 
overwritten by the hotpatch. Older versions of Windows are not 
compiled with this option and cannot be hotpatched.



Exception Handling
This is better than anything I could have said about it:

Reversing Microsoft Visual C++ Part I: Exception Handling
by Igor Skochinsky:

http://www.openrce.org/articles/full_view/21



Part III

Improving Your Tools



Improving Your Tools
• IDA autoanalysis

○ Overview of the autoanalysis algorithm
○ Problems with the disassembly

• Improving the analysis with IDA plugins
○ Symbol loading plugin



Autoanalysis Algorithm
The autoanalysis algorithm is not documented, but it can be 
roughly described as follows:

1. Load the file in the database and create segments
2. Add the entry point and all DLL exports to the analysis 

queue
3. Find all typical code sequences and mark them as code. 

Add their addresses to the analysis queue
4. Get an address from the queue and disassemble the code 

at that address, adding all code references to the queue
5. If the queue is not empty, go to 4
6. Make a final analysis pass, converting all unexplored bytes 

in the text section to code or data



Autoanalysis Problems
There are a number of situations where the autoanalysis 
heuristics lead to incorrect disassembly. Some of these problems 
create serious difficulties for automatic analysis tools like BinDiff. 
The three main problems that I've seen are:

• Data disassembled as code
• Function detection problems
• Incorrectly identified local variables due to stack pointer 

tracking problems



Autoanalysis Problems
Code outside of a function is an indication of incorrectly 
disassembled data or a function detection problem:

should be
a string

should be
a function



Data Disassembled as Code
771B7650 ; const CHAR _vszSyncMode

771B7650 _vszSyncMode:

771B7650 push ebx

771B7651 jns short near ptr loc_771B76BF+2

771B7653 arpl [ebp+6Fh], cx

771B7656

771B7656 loc_771B7656:

771B7656 db 64h, 65h

771B7656 xor eax, 48000000h

771B765D imul esi, [ebx+74h], 2E79726Fh

771B7664 dec ecx

771B7665 inc ebp

Instead of:

771B7650 ; const CHAR _vszSyncMode

771B7650 _vszSyncMode db 'SyncMode5',0 



Data Disassembled as Code
Solutions:

• use PDB plugin from IDA 4.9 SP or later
• disable "Make final analysis pass"

The PDB plugin in IDA 4.9 SP automatically creates strings for 
string variables, which partially solves this problem. This only 
works for binaries with debugging symbols.

The final analysis pass runs after the initial autoanalysis is 
complete and converts all unexplored bytes in the text segment 
to data or code. It is often too aggressive and disassembles data 
as code. Disabling the option ensures that only real code is 
disassembled, but might leave some functions unexplored. If it is 
disabled, only the first element in a vtable is analyzed, leaving 
the rest of the member functions unexplored.



Function Detection Problems
• If foo is a wrapper around bar, the compiler can put the two 

functions next to each other and let foo fall through to bar.

void foo(a) {
if (a == 0)

return;
else

bar(a);
}

• Functions chunks inside another function

If the function foo is analyzed
first, it will include the bar
chunk. If bar is analyzed first,
foo will be split in two chunks.

foo
…

bar
…

foo
…

…

bar
…



Stack Pointer Tracking Problems
IDA uses a stack pointer propagation algorithm to convert esp 
relative data references to local variable references. If a function 
is called using the stdcall calling convention, but IDA assumes 
cdecl, the stack pointer after the call will be incorrect.

00405169 004 mov eax, [esp+4+var_4]

0040516D 004 push eax

0040516E 008 call func

00405174 008 mov [esp+8+var_8], eax

The second variable reference is actually to var_4:

00405169 004 mov eax, [esp+4+var_4]

0040516D 004 push eax

0040516E 008 call func

00405174 004 mov [esp+4+var_4], eax



Improving the Analysis with IDA 
Plugins

Ideas:
• Show code outside of functions
• Detect incorrect stack pointer values at branch merge points 

or at the end of the function
• Improve the symbol loading plugin with name and type based 

heuristics



IDA PDB Plugin
• Source code included in the IDA SDK
• Uses the DbgHelp API
• Supports DBG and PDB symbols through dbghelp.dll
• Algorithm:

○ create names for all symbols
○ if the symbol name is `string', create a C or UNICODE string
○ if the demangled name is not of type MANGLED_DATA, create 

a function at that address



Determina PDB Plugin
• Uses FPO records to detect functions
• Does not create functions for demangled names of an 

unknown type
○ reduces the instances of data disassembled as code

• Special handling for imports, floats, doubles and strings
• Creates vtables as arrays of function pointers
• The symbols are applied to the database starting from the 

end of the file and going up
○ significantly improves function chunking

• Much better GUI

Available under a BSD license from:

http://www.determina.com/security.research/

http://www.determina.com/security.research/


Determina PDB Plugin Demo



Questions?

asotirov@determina.com


